
CASE STUDY

From tech debt to tech edge
How Purplle saved $200K+ and rebuilt 600+ internal panels
with just two engineers

COMPANY
SNAPSHOT

Company: Purplle.com

Sector: Beauty & Personal Care

Daily Orders: 50,000–100,000 (2x during sales)

SKU Count: 60,000+

Ops Panels Pre-Migration: 600+

Tech Stack (Pre): PHP, Angular, React, in-house
scripts

Platform Chosen: DronaHQ (self-hosted)

Migration Timeline: Q4 2023 – Q3 2024 (phased)

Purplle is one of India’s fastest-

growing beauty marketplaces,

serving millions of users across tier

2 and tier 3 cities.

As demand scaled and digital

touchpoints expanded, the team

found itself entangled in a web of

fragmented internal tools, most of

which had been created

reactively over the years to solve

specific operational needs.

These legacy panels had grown

from a few scripts into hundreds of

disconnected tools stitched

together by devs across different

time periods and technologies.

“Everyone talks about scale. No one

talks about 600 panels quietly running

in the background—until they break.”

— Vivek Parihar, VP Engineering

Full conversation →

1. The hidden cost of

internal tools

https://youtu.be/Spd78jy08qk?si=LEsVdvdqci0J-Nfn

The reality of scale isn’t just about

user growth or GMV acceleration—it’s

about what happens behind the

scenes when core operations are run

by systems no one wants to touch.

Purplle had accumulated over 600

internal admin panels. Some were 8+

years old. Some were still in use.

Others were forgotten, duplicated, or

obsolete but continued to live in the

system—until a crisis exposed them.

Panels built in PHP, React, Angular, and ad hoc frameworks
No shared codebase, no source-of-truth documentation
Business teams relied on devs for every tweak
Minor updates (e.g., adding a dropdown) could take 3–5 days
Tech leadership struggled to even quantify what existed
Dev hours were wasted maintaining systems with no future

This chaos created not just inefficiencies but real risk. Upgrade a PHP

version? Break half a panel. Train a new engineer? Weeks of

shadowing and still uncertainty. It became clear that to scale

confidently, the internal tooling strategy had to change.

“We wanted to stop spending

engineering hours on tasks like

changing a textbox color. Low-code

gave us a way to move fast without

compromising on structure.”

 — Chintan Surelia, Engineering Manager

Full conversation →

2. The low-code pivot

https://youtu.be/nM3XRh_DsxQ?si=Gx8KVq6Ez8K2TJ9j

The team needed a way to tame complexity without reinventing

everything. The answer wasn’t to rebuild 600 tools.

It was to rethink the structure.

 Why Low-Code?

Free up backend engineers from UI maintenance

Establish consistent design and access patterns

Reduce turnaround from weeks to hours

Enable rapid iteration for ops and business teams

Consolidate scattered workflows onto a common platform

3. Core principles

Headless APIs
handle logic and

business rules

Admin panels
become

lightweight shells

Low-code is the
default for all future

internal tools

Version control,
RBAC, CI/CD

enforced

Phase Description Duration

0 – Foundation REST/GraphQL gateway + middleware setup 3–4 months

1 – Audit Identified 600+ panels, prioritized top 100 1 month

2 – Pilot Formed 2-person pod; built first 60 panels 2 months

3 – Scale Migrated 100+ panels with tight loops 4–5 months

4 – Ongoing Default all new tools to low-code Continuous

4. Migration blueprint

"Even a pin code toggle had its own panel. Migration needed a map."

During the audit, the team

classified panels into must-

have, good-to-have, and

deprecated categories.

Some were rebuilt from scratch,

others reimagined. Overlapping

logic was abstracted into shared

APIs. DronaHQ became the new

surface layer.

The two-member pod worked

closely with backend owners

and business teams to

streamline rollouts.

Because changes were no

longer bottlenecked by frontend

bandwidth, operations teams

began requesting

improvements more frequently.

Metric Pre-migration Post-migration

Active builders 10–15 ad hoc devs (avg 12 FTE) 2 dedicated builders

Annual Effort
~50 man-months maintaining &
enhancing 600 panels (≈ 10% annually)

24 man-months total
(maintenance + new)

Man-months saved 26

5. Measurable impact Manpower Efficiency

If a fully-loaded senior engineer costs $8,000/month:

 Annual $ saved = 26 × $8,000 = $208,000

Task Pre-migration Post-migration

Simple Panel 3–4 days 15–30 mins

Complex Panel 2–3 weeks 2–3 days

Rollbacks Manual, risky 1-click

5. Measurable impact Dev Velocity

5. Measurable impact Operational Clarity

One central queue for all tooling requests

Reusable connectors and components

Shared UI patterns for better usability

Audit trails, access controls, and environments in place

Business teams could now think in terms of features, not blockers

“Standardization helped us prevent

drift. Previously, we had Angular, React,

and even old PHP scripts. A small

change used to take days, sometimes

a week. Now, a two-person team can

manage requests that used to require

10 developers.”

— Vivek Parihar, VP Engineering

Full conversation →

https://youtu.be/Spd78jy08qk?si=LEsVdvdqci0J-Nfn

6. What made it work

API-First: All panels consumed clean REST or GraphQL endpoints

Middleware Design: Panels were decoupled from backend constraints

Guardrails Built-In: Developers worked within safe, repeatable systems

Central Ownership: A focused pod meant faster delivery and fewer errors

Composable Components: Reduced time spent on boilerplate UI and

plumbing

These decisions enabled Purplle to move from reactive maintenance to proactive

innovation.

What this means for engineering leaders

Internal tools are business-critical. Treat them like products.

Tech debt isn’t just about code. It’s about structure.

Centralizing with low-code doesn’t reduce flexibility—it amplifies it.

You don’t need 20 devs to manage 600 panels. You need the right foundation

“It’s not just about saving time. It’s about unlocking

bandwidth for what really moves the business.”

“Every team had a different way of doing

things. We had to centralize development,

add structure, and remove decision

fatigue. With DronaHQ, we could focus on

the logic and not worry about reinventing

components or fixing broken UIs.”

 — Chintan Surelia, Engineering Manager

Full conversation →

https://youtu.be/nM3XRh_DsxQ?si=Gx8KVq6Ez8K2TJ9j

Want to see what DronaHQ can do for your team?
Let’s talk about migrating your internal tools.

Schedule a walkthrough

https://www.dronahq.com/request-a-demo/?utm_source=purplle-pdf

