
Hidden costs of
DIY internal tools:
Why low-code is the future

Every business reaches a point where off-the-shelf tools or spreadsheets just can’t keep up with
their needs. That’s when the decision to build internal tools in-house feels logical—after all, who
knows your processes better than your own team? But what looks like a cost-saving, flexible
solution on the surface often turns into a hidden drain on resources and productivity.

DIY internal tools seem appealing initially. They offer control and customization. But as the
business grows, maintaining these tools becomes a significant burden. The result? Engineers
bogged down in maintenance, technical debt piling up, and operational bottlenecks that slow
down progress.

In this eBook, we’ll uncover the unseen challenges of building and maintaining DIY internal tools.
We’ll explore why the traditional approach might not be as cost-effective as it seems and why
low-code platforms are emerging as the smarter alternative for creating scalable, secure, and
efficient internal tools.

Hidden costs of
DIY internal tools
And why low-code is the future

Introduction: Why internal tools matter

Gayatri Sachdeva Roger Jipp
Developer Engagement Strategist

Authored by

Director of Sales

https://www.dronahq.com/?utm_source=eBook&utm_medium=PDF&utm_campaign=DIYInternalTools
https://www.dronahq.com/?utm_source=eBook&utm_medium=PDF&utm_campaign=DIYInternalTools

Table of content
Introduction: Why Internal Tools Matter

Chapter 1: The DIY Trap
Development Costs and Time
Technical Debt: The Long-Term Consequences
Lackluster User Experience: A Common Flaw
Key-Person Dependency: A Serious Risk
Scaling Challenges: When DIY No Longer Fits

Chapter 2: Why Low-Code is the Solution to DIY Challenges
What is Low-Code?
Speeding Up Development Without Sacrificing Quality
Customization and Flexibility for Engineering Teams
Scaling Internal Tools with Low-Code

Chapter 3: Breaking Down the Costs – DIY vs Low-Code
Development Costs: Comparing DIY and Low-Code
Maintenance and Technical Debt: Long-Term Implications
Infrastructure and DevOps Costs: Overlooked Expenses
Product Management and Iteration Costs: Ongoing Investment

Chapter 4: Security & Compliance – Mitigating Risks with Low-Code
Built-In Security Features
Compliance Management Out of the Box
Automatic Updates and Continuous Security Monitoring
Auditing and Reporting for Compliance

Chapter 5: Empowering Engineering Teams for Strategic Impact
Engineers as Strategic Leaders, Not Just Coders
Collaboration Without the Compromise of Control

Chapter 6: Future of Internal Tools – Securing Operational Leverage
with Low-Code

4
4
4
5
5
6

8
8
9
9

10

12
12
13
14
14

16
16
17
17
18

20
20
22

24

Chapter 1: The DIY Trap
Building internal tools from scratch seems logical at first. You know exactly what your business
needs, and having control over the development process feels empowering. But as with many
things, the hidden complexities of DIY internal tools can outweigh the benefits, leading to costly
inefficiencies down the road.

Developing DIY internal tools demands a team of frontend and backend developers,
infrastructure and DevOps specialists, product managers, and designers. Even a basic team can
cost a small startup over $1 million annually, with costs escalating to tens of millions for mid-
sized companies and over $100 million for global enterprises. Both those are not the only costs.
Here’s what most teams don’t see coming.

1. Development time: A silent drain on resources

Time is money, and nowhere is this more evident than in custom
tool development. While the initial build of a DIY tool may seem
manageable, it’s the ongoing updates, fixes, and feature requests
that quickly turn into a bottleneck. Every tweak to the tool requires
engineers to pause critical work on core products, pulling focus
and delaying innovation.

Key takeaway: Every hour spent on DIY tool maintenance is an
hour not spent on building your product or improving customer
experience.

Key takeaway: The more a DIY internal tool is patched and expanded,
the greater the cost to maintain and refactor it in the future.

2. Technical debt: The long-term consequence

DIY internal tools, by nature, grow over time. What starts as a small solution to a simple
problem often balloons into a sprawling, complex system as more features are added. Without
proper planning and scalability in mind, this results in significant technical debt—quick fixes,
patched-up solutions, and outdated frameworks. Soon enough, your once-pristine tool
becomes a burden, requiring extensive refactoring to keep it running smoothly.

Stat Alert: Engineers spend up to 40% of their time on tasks
unrelated to core product development (McKinsey).

3. Security and compliance: Not optional, but essential

DIY tools are often built with functionality in mind, not security. This leaves gaps in role-based
access control, data encryption, and audit logs—issues that can lead to compliance violations
and security breaches.

Key takeaway: Security failures in DIY tools can expose your business to significant risk, both
in terms of compliance and reputation.

Building a secure, compliant internal tool from scratch requires expertise, ongoing vigilance,
and significant resources. Many businesses underestimate the cost and complexity of ensuring
robust security in their DIY solutions.

Key takeaway: The lack of attention to
front-end design in DIY tools results in
inefficient, frustrating user experiences.

4. Lackluster user experience: A common flaw

In many cases, internal tools are built without a focus on
user experience. Front-end design often takes a backseat,
leading to clunky, unintuitive interfaces that make daily
tasks harder for teams. Without a dedicated
focus on UX, these tools may lack the polish
necessary to deliver a seamless experience.

Key takeaway: Relying on a single person or a small team to maintain custom-built tools can
lead to major disruptions if they depart.

5. Key-person dependency: A serious risk

When DIY tools are built and maintained by a small team—or worse, a single engineer—it
creates a critical dependency. If that person leaves, their knowledge goes with them. Training
new engineers on the tool becomes costly and time-consuming, slowing down your operations
and leaving you vulnerable.

6. Scaling challenges: When DIY no longer fits

As business grows, so does the complexity of internal tools. Scaling these tools to accommodate
larger teams and higher data volumes requires constant attention and resources; keep up when
user demands increase, leading to performance issues, integration failures, and data bottlenecks.

A logistics provider encountered severe limitations with their DIY tool during
rapid expansion across 50+ cities. The tool, designed in-house for inventory
management and delivery tracking, struggled with performance and
integration as operations scaled.

Key takeaway: Relying on a single person or a small team to maintain custom-built tools can
lead to major disruptions if they depart.

Let’s look at a real example

Performance Bottlenecks: As transaction volumes increased, system response times
slowed from 2 seconds to 15 seconds, disrupting operations.
Integration Failures: Error rates in inventory data rose by 25% due to poor integration
with new regional databases and third-party services.
Data Bottlenecks: The system experienced up to 10 hours of downtime monthly,
particularly during peak operational periods.

Challenges of DIY Tools:

Stat Alert: Firms that scale prematurely without the right
internal systems in place fail 70% of the time (Startup
Genome).

Budget constraints: Engineering time across teams is expensive and

stretches resources thin.

1.

Development time: Every hour spent on DIY tools pulls engineers away

from core product work.

2.

Technical debt: Constant patches and growth lead to long-term

maintenance burdens.

3.

Innovation lag: As the tool evolves, future improvements become slower

and harder to implement.

4.

Security risks: Application sprawl creates vulnerabilities due to a lack of

standardized IT governance.

5.

Key person risk: Dependency on single developers leads to major risks

when they leave.

6.

Lackluster user experience: DIY tools often lack the frontend design

expertise needed for smooth user experiences.

7.

Scaling challenges: DIY tools struggle to keep up with growing teams and

changing requirements.

8.

Maintenance demands: DIY tools eventually become bottlenecks,

requiring constant attention and pulling resources away from innovation.

9.

Chapter 1 Recap – Key Takeaways

https://www.dronahq.com/request-a-demo/?utm_source=eBook

Chapter 2: Why Low-Code is
the Solution to DIY Challenges
In the previous chapter, we explored how DIY internal tools come with hidden costs—extended
development times, technical debt, scalability issues, and security concerns. These challenges
slow down engineering teams and keep them tied up in maintenance instead of innovation.

Low-code platforms offer a solution to these problems. By providing pre-built components,
automation tools, and flexible integrations, low-code allows engineering teams to build and scale
internal tools much faster, while addressing the hidden costs associated with traditional DIY
development.

In this chapter, we’ll dive into what low-code really is and how it addresses the specific challenges
we discussed earlier.

Low-code development platforms allow engineers to build applications using pre-built
components and a visual interface but with the flexibility to add custom code where needed.
Unlike DIY solutions, which require custom development from scratch, low-code provides a way
to streamline development while maintaining control over the outcome.

Section 1:

What is low-code and how does it address DIY challenges?

Faster development: Low-code platforms reduce the time
required to build internal tools by offering ready-made
components.
Simplified scalability: With built-in support for handling larger
data sets and user loads, low-code tools are built to scale alongside
your organization, avoiding the need for constant redevelopment.
Security from the start: Low-code platforms come with pre-
configured security features like role-based access control (RBAC)
and encryption, reducing the need for engineers to build and
manage security protocols from scratch.

How low-code solves DIY challenges:

Stat Alert: By 2024, 65% of all app development will be done
using low-code platforms (Gartner).

A key reason engineering teams benefit from low-code is the ability to accelerate the
development process. Low-code platforms let engineers focus on business logic and integration
while handling the repetitive groundwork like UI building or data binding through pre-built
elements. These tools help engineers move faster without sacrificing quality.

Section 2:

Speeding up development without sacrificing quality

Pre-built components: Ready-to-use components such as forms, buttons, and data tables
reduce the time spent on building user interfaces.
Faster prototyping: Engineers can quickly create functional prototypes using drag-and-drop
tools, gather feedback from stakeholders, and iterate faster.
Pre-configured integrations: Built-in connectors make it easier to integrate with databases,
APIs, and other internal systems without extensive configuration, reducing engineering
overhead.

How low-code accelerates development:

One concern many engineering teams have about adopting low-code platforms is the potential
lack of control over customization. However, low-code platforms are designed to balance speed
with flexibility, allowing engineers to write custom code and extend platform capabilities as
needed.

Section 3:

Customization and flexibility for engineering teams

Custom logic: Engineers can easily insert custom code (JavaScript, SQL, etc.) into their
applications to handle unique business requirements or workflows.
Custom APIs: In addition to the platform’s pre-built connectors, engineers can integrate with
proprietary systems or third-party APIs by writing their own API connections.
Flexible components: Engineers can take pre-built components and modify them to fit
specific use cases, ensuring that the final tool is tailored to the business’s needs.

How low-code platforms offer flexibility:

Stat Alert: Low-code development can reduce development
time by up to 80%, with some businesses reporting a 300%
return on investment (ROI) (Forrester).

DIY internal tools often struggle to scale as businesses grow, requiring constant rework to handle
more data or users. Low-code platforms, by contrast, are built with scalability in mind, allowing
engineering teams to focus on developing tools without worrying about infrastructure limits.

Section 4:

Scaling internal tools with low-code

Automatic scaling: Cloud-based low-code platforms handle increased user loads and data
requirements without the need for manual intervention from engineers.
Performance optimization: Built-in performance monitoring tools allow engineers to identify
and resolve bottlenecks, ensuring applications run efficiently as they scale.
Seamless updates: Engineers can extend or modify internal tools as needed, without the
need to refactor entire systems or rebuild from scratch.

How low-code ensures scalability:

Low-code platforms reduce development time by providing pre-built

components and handling repetitive tasks like UI building.

1.

Scalability is built-in, meaning internal tools can grow alongside the

business without significant redevelopment efforts.

2.

Customization remains intact: Engineers retain full control over the logic

and integrations, allowing them to meet unique business requirements.

3.

Security is built-in: Pre-configured security features reduce the need for

engineers to develop and maintain custom security protocols.

4.

Chapter 2 recap – key takeaways:

Apps, forms,
dashboards

Automations

Permissions
(RBAC)

Custom
Environments

App Analytics

User Analytics

Granular Audit
logs

Training &
Onboarding

Version
Controls

Deploy on local
machine

Cloud or
self hosted

SSO Custom
Auth

Secrets
Management

Audit Logs

Integrated Apps

Mobile Apps

Most comprehensive
low-code platform to
build internal tools

BUILD

SECURE

DEPLOY

MONITOR

Chapter 3: Breaking Down the
Costs – DIY vs Low-Code
Building and maintaining internal tools comes with significant costs, many of which aren’t always
apparent at the start. Engineering teams often get bogged down in development, maintenance,
and scalability issues when handling DIY internal tools. Low-code platforms, by contrast, offer a
more efficient and cost-effective approach.

In this chapter, we will break down the hidden costs of DIY internal tools and compare them to
the benefits of low-code. We’ll explore how low-code reduces the burden on engineering teams,
allowing them to focus on innovation rather than firefighting.

Building internal tools from scratch
requires engineers to invest substantial
time and effort into creating every
component, from the UI to backend
integrations. This can take weeks or
months, delaying development and
consuming valuable engineering time.

Low-code platforms come with pre-built
components and ready-made
integrations, drastically reducing the
time required to build internal tools.
Engineers can quickly assemble tools,
allowing them to focus on higher-level
innovation.

1. Development Costs

Low-Code Approach

High development time: Custom
development means building
everything from scratch, which
takes significant time.
Opportunity cost: Every hour spent
on internal tools is time engineers
are not spending on core product
development.

Time savings: Pre-built
components reduce development
time, allowing engineers to deliver
tools faster.
Focus on innovation: Engineers
can focus on more strategic tasks,
freeing them from repetitive
development.

DIY / Traditional Approach

Stat Alert: 42% of startups fail because of operational
inefficiencies (Startup Genome)

Securing DIY tools requires engineers to
build custom security features such as
encryption, role-based access control
(RBAC), and audit logs. Additionally,
ensuring compliance with regulations like
GDPR or SOC2 is complex and resource-
intensive.

Low-code platforms come with built-in
security features like RBAC and
encryption, ensuring that internal tools
are secure from the start. Many low-
code platforms are also designed to
meet common compliance standards,
reducing the burden on engineers.

2. Security and Compliance Costs

Low-Code Approach

Custom security requirements:
Engineers must develop security
protocols from scratch, consuming
time and resources.
Compliance burden: DIY tools may
not meet evolving regulatory
requirements, increasing the risk of
non-compliance.

Built-in security: Enterprise-grade
security features are provided out
of the box.
Compliance-ready: Platforms are
often designed to meet industry
standards like GDPR, HIPAA, and
SOC2.

DIY / Traditional Approach

Once built, DIY internal tools require
ongoing maintenance. Bugs, performance
issues, and feature updates demand
continual attention. Over time, DIY tools
accumulate technical debt, becoming
harder to update and maintain.

Low-code platforms automatically
handle updates and scalability, reducing
the need for manual maintenance. Pre-
built components and templates
minimize technical debt, allowing tools
to evolve more easily.

3. Maintenance and Technical Debt

Low-Code Approach

Ongoing maintenance: Engineers
must continuously update and
maintain DIY tools.
Technical debt: As the tools age,
they become more difficult to
modify and maintain.

Reduced maintenance: Platforms
manage updates and scaling,
reducing the maintenance burden
on engineers.
Minimized technical debt: Pre-
built components ensure that tools
remain easy to modify and extend.

DIY / Traditional Approach

Stat Alert: Engineers spend up to 40% of their time on tasks
unrelated to core product development (McKinsey).

Securing DIY tools requires engineers to
build custom security features such as
encryption, role-based access control
(RBAC), and audit logs. Additionally,
ensuring compliance with regulations like
GDPR or SOC2 is complex and resource-
intensive.

Low-code platforms come with built-in
security features like RBAC and
encryption, ensuring that internal tools
are secure from the start. Many low-
code platforms are also designed to
meet common compliance standards,
reducing the burden on engineers.

4. Infrastructure and DevOps Costs

Low-Code Approach

Custom security requirements:
Engineers must develop security
protocols from scratch, consuming
time and resources.
Compliance burden: DIY tools may
not meet evolving regulatory
requirements, increasing the risk of
non-compliance.

Built-in security: Enterprise-grade
security features are provided out
of the box.
Compliance-ready: Platforms are
often designed to meet industry
standards like GDPR, HIPAA, and
SOC2.

DIY / Traditional Approach

Once built, DIY internal tools require
ongoing maintenance. Bugs, performance
issues, and feature updates demand
continual attention. Over time, DIY tools
accumulate technical debt, becoming
harder to update and maintain.

Low-code platforms automatically
handle updates and scalability, reducing
the need for manual maintenance. Pre-
built components and templates
minimize technical debt, allowing tools
to evolve more easily.

5. Product Management and Iteration Costs

Low-Code Approach

Ongoing maintenance: Engineers
must continuously update and
maintain DIY tools.
Technical debt: As the tools age,
they become more difficult to
modify and maintain.

Reduced maintenance: Platforms
manage updates and scaling,
reducing the maintenance burden
on engineers.
Minimized technical debt: Pre-
built components ensure that tools
remain easy to modify and extend.

DIY / Traditional Approach

Low-code platforms reduce development time by providing pre-built

components and handling repetitive tasks like UI building.

Scalability is built-in, meaning internal tools can grow alongside the

business without significant redevelopment efforts.

Customization remains intact: Engineers retain full control over the logic

and integrations, allowing them to meet unique business requirements.

Security is built-in: Pre-configured security features reduce the need for

engineers to develop and maintain custom security protocols.

Chapter 3 recap – key takeaways:

Chapter 4: Security & Compliance –
Mitigating Risks with Low-Code
One of the most critical considerations when building internal tools is ensuring that they are
secure and compliant with industry regulations. In-house development often requires engineering
teams to manually implement security protocols and stay up to date with evolving compliance
standards, which can quickly become a resource-intensive burden.

Low-code platforms simplify this process by providing built-in security features and compliance
tools. These platforms offer everything from encryption to role-based access controls (RBAC) out
of the box, ensuring that internal tools remain secure while meeting industry-specific regulatory
requirements like GDPR, SOC2, and HIPAA.

Low-code platforms are designed with security in mind from the ground up. This means that
rather than building custom security features for each tool, engineering teams can leverage pre-
configured, enterprise-grade security protocols that protect data and ensure user privacy.

1. Built-In Security Features

Role-Based Access Control (RBAC): Low-code platforms allow you to define user roles
and assign permissions accordingly. This ensures that users only have access to the data
and features relevant to their role, reducing the risk of unauthorized access.
Data Encryption: Both data at rest and in transit are automatically encrypted, ensuring
that sensitive business information is protected from unauthorized access or interception.

Key Security Features:

Authentication and Single Sign-On (SSO): Low-code
platforms provide built-in authentication methods,
including SSO, which integrates with your existing
identity management systems to streamline login and
ensure secure user authentication.
Audit Logs and Monitoring: Platforms include detailed
audit logs that track user actions, enabling teams to
monitor for suspicious behavior, investigate security
incidents, and meet compliance requirements.

Stat Alert: Low-code platforms often come with built-in
compliance tools like GDPR, HIPAA, and SOC2 compliance.

Maintaining compliance with industry regulations is a major concern for companies handling
sensitive data, especially in sectors like healthcare, finance, and retail. DIY internal tools require
engineering teams to manually configure compliance features, which can be complex and time-
consuming. Low-code platforms simplify this by offering compliance certifications and tools that
ensure your internal tools meet industry standards without needing to build custom solutions.

2. Compliance Management Out of the Box

GDPR: Low-code platforms offer built-in features
to ensure compliance with the GDPR. These
include data subject rights management, audit
logs, and consent tracking.
HIPAA: For companies in highly regulated
industries such as healthcare, low-code platforms
provide HIPAA-compliant infrastructure, including
encryption and access controls that meet specific
security standards. Platforms that support self-
hosting further make sure you are HIPAA
compliant.

Regulatory Compliance Made Easy

SOC2: Platforms often include SOC2 certifications, ensuring that internal tools meet rigorous
security, availability, processing integrity, confidentiality, and privacy requirements.

Security patches: Low-code platforms regularly release security patches and updates to
keep tools protected from the latest threats.
Compliance adjustments: As regulations change, low-code platforms automatically
update compliance features to ensure that internal tools remain compliant with evolving
standards.
Zero downtime: Platforms handle these updates seamlessly in the background, ensuring
that internal tools experience minimal downtime during maintenance or updates.

Security threats evolve over time, and so do compliance regulations. DIY internal tools require
constant updates to stay secure and compliant, placing a heavy burden on engineering teams.
Low-code platforms address this issue by offering automatic updates and continuous security
monitoring, ensuring that internal tools remain secure without the need for manual intervention.

3. Automatic Updates and Continuous Security Monitoring

Continuous Updates:

Auditing is an essential aspect of maintaining compliance,
particularly in regulated industries like healthcare and finance.
With DIY tools, building audit trails and generating compliance
reports can be complex and resource-intensive. Low-code
platforms simplify this process by offering built-in auditing and
reporting features, allowing businesses to meet compliance
requirements without additional development work.

4. Auditing and Reporting for Compliance

Automated logging: Low-code platforms automatically generate audit logs that track user
actions, data access, and changes to the system. These logs can be easily accessed and
reviewed for compliance audits.
Comprehensive reports: Platforms provide customizable reporting features that allow
engineering and compliance teams to generate reports for internal review or external
audits with minimal effort.
Data retention policies: Low-code platforms support data retention policies that ensure
audit logs are kept for the required duration, helping businesses meet regulatory retention
requirements.

Audit Trails:

Scalable security features: As the user base grows, low-code platforms ensure that
security features such as encryption, authentication, and RBAC scale automatically,
without requiring manual rework by engineering teams.
Cross-industry compliance: Whether your business is in healthcare, finance, retail, or
another regulated industry, low-code platforms offer cross-industry compliance tools that
grow with your business.

As businesses grow and scale, security and compliance requirements become even more critical.
DIY tools often struggle to keep up with increasing security demands, particularly as user bases
grow and tools become more complex. Low-code platforms are built to scale, offering flexible
and secure environments that meet the needs of growing businesses.

5. Security and Compliance at Scale

Scalability and Security:

Built-in security features: Low-code platforms provide pre-configured

security protocols such as encryption, RBAC, and audit logging,

significantly reducing the burden on engineering teams.

Compliance made easy: Low-code platforms offer built-in compliance

tools for regulations like GDPR, HIPAA, SOC2, and PCI-DSS, ensuring

that internal tools meet industry standards without manual

configuration.

Automatic updates: Platforms handle regular security updates and

compliance adjustments automatically, reducing the risk of

vulnerabilities and ensuring ongoing compliance.

Audit trails and reporting: Built-in audit logs and customizable reporting

features simplify the compliance process, making it easier to meet

regulatory requirements and pass external audits.

Scalability: Low-code platforms are designed to scale security and

compliance features automatically, ensuring that growing businesses

remain secure and compliant without additional engineering work.

Chapter 4 recap – key takeaways:

Chapter 5: Empowering Engineering
Teams for Strategic Impact
Low-code platforms don’t just make the development process faster—they fundamentally shift
how engineering teams operate, from managing everyday tasks to driving strategic, high-value
innovations. With fewer mundane responsibilities like infrastructure management and routine
updates, engineers are free to focus on projects that drive business outcomes, helping the team
take on ambitious goals.

This chapter will explore how low-code empowers engineers to go beyond solving small issues
and start becoming change-makers within their organizations.

Low-code transforms engineers from being implementers of business requirements to strategic
decision-makers who proactively solve problems. Instead of getting bogged down by daily
operational tasks, engineers can now lead initiatives that align directly with business objectives.

1. Engineers as Strategic Leaders, Not Just Coders

Engineering-led innovation: Engineers can now initiate solutions to business challenges
rather than just responding to requests.

Developing custom-fit solutions: Low-code enables engineers to prototype, iterate, and
deliver systems that are tailored for specific business operations, driving more value for the
organization.

Proactive Problem Solving

Low-code allows engineers to integrate advanced data analytics and machine learning into
internal tools, transforming department decision-making processes. Engineers can create
dashboards that surface actionable insights from business data, leading to smarter decisions.

3. Engineers as Enablers of Data-Driven Insights

Advanced analytics: Engineers can rapidly
build tools that analyze internal data
streams, helping departments make more
informed, data-backed decisions.
AI/ML integration: Low-code allows
engineers to integrate machine learning
algorithms into internal tools to automate
predictions, improve customer service, or
optimize operations.

Driving Business Outcomes Through Data

Low-code platforms eliminate the technical hurdles involved in
experimenting with new tools and systems. Engineers can now
conduct multiple experiments simultaneously, testing different
approaches to solving business problems and improving internal
processes.

2. Harnessing the Power of Rapid Experimentation

Instant iterations: By shortening the development cycle,
engineers can test out new hypotheses and deploy working
versions in real time.
Building smarter systems: With rapid iteration cycles, engineers
can use low-code to introduce data-driven models, AI, or
automation into workflows, bringing intelligent solutions to the
business.

Agile Testing of Ideas

Stat Alert: Firms that adopt automation early scale 30% faster
than those that rely on manual processes (Bain & Company).

By building systems that are scalable, flexible, and intelligent, engineers can use low-code to
deliver transformational change, from optimizing operations to creating new customer
experiences.

5. Long-Term Impact

Building for the future: With fewer constraints on development time, engineers can focus
on long-term projects that have the potential to transform entire business units.
Scaling innovation: Low-code makes it possible to test, deploy, and scale new solutions
rapidly, helping businesses stay agile in competitive markets.

Transformational Projects

While collaboration is a key benefit of low-code, the chapter should emphasize that engineers
don’t lose control over critical aspects of development. Engineers can lead the architectural
design while allowing non-technical teams to make small adjustments within a controlled
environment, maintaining oversight.

4. Collaboration Without the Compromise of Control

Controlled autonomy: Non-technical users
can configure and modify internal tools
within set parameters, while engineers
maintain overall control of the system
architecture and integrations.
Co-designing without silos: Engineers lead
the technical architecture while enabling
teams to collaborate on operational tweaks,
improving both communication and delivery
speed.

Managing Collaboration Effectively

Engineers as strategic leaders: Low-code empowers engineers to move

from tactical execution to leading innovation, contributing to business

growth.

Rapid experimentation drives smarter systems: Engineers can quickly

test new approaches, incorporating AI and data-driven insights into

business solutions.

Collaboration without losing control: Engineers maintain control over

the architecture while enabling non-technical teams to contribute to

internal tools, fostering effective cross-team collaboration.

Long-term impact: Low-code enables engineers to drive large-scale,

transformational innovations that have lasting impacts on the

business.

Chapter 5 recap – key takeaways:

Chapter 6: Future of Internal Tools –
Securing Operational Leverage with
Low-Code
The strategic importance of enhancing developer productivity and end-user efficiency cannot
be overstated. Investing in operational software to automate business processes is not just a
choice but a necessity, particularly in a challenging macroeconomic environment. Low-code
platforms are at the forefront of this transformation, driving down costs while significantly
improving customer experiences.

Low-code technology has proven to be a game-changer, allowing businesses to find operating
leverage by streamlining development processes and boosting the efficiency of business users. By
reducing the reliance on extensive coding and leveraging visual development environments, low-
code platforms minimize the time and resources traditionally required for software development.

Statistical Evidence Supporting Low-Code Adoption:

The Logical Path Forward: Low-Code Platforms

Low-code platforms encapsulate the core value proposition required in today’s business
landscape:

Engineering Time Savings: They significantly cut down on the hours needed to build and
maintain internal tools, allowing engineering teams to focus on high-value projects.
Exponential Efficiency for Business Users: By enabling non-technical team members to
manage updates and integrations, low-code platforms empower a broader segment of the
workforce, enhancing overall productivity.

Driving Down Costs While Enhancing Customer Experience

The low-code market is expected to grow from $13 billion in 2020 to over $187
billion by 2030, reflecting a compounded annual growth rate of 26.1% (Source:
MarketsandMarkets).
A study by Forrester found that low-code development can reduce development
time by up to 80%, with some businesses reporting a 300% return on investment
(ROI) due to decreased development costs and quicker time-to-market.
According to Gartner, by 2024, 65% of all app development functions will be
performed by low-code platforms, up from less than a third today.

The future of internal tools is clearly leaning towards low-code solutions. As businesses strive to
remain competitive in a rapidly evolving market, adopting low-code technology is a strategic
decision that yields substantial operational advantages.

To learn more visit www.dronahq.com or book a 1:1 demo with DronaHQ low-code platform
Solution Engineers to help you with your internal tooling.

Embrace Low-Code Today

Build custom apps, incredibly fast

https://www.dronahq.com/?utm_source=eBook
https://www.dronahq.com/?utm_source=eBook
https://www.dronahq.com/request-a-demo/?utm_source=eBook

